Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Impact of Carbonaceous Compounds Present in Real-World Diesel Exhaust on NOx Conversion over Vanadia-SCR Catalyst

2016-04-05
2016-01-0921
Exposure of hydrocarbons (HCs) and particulate matter (PM) under certain real-world operating conditions leads to carbonaceous deposit formation on V-SCR catalysts and causes reversible degradation of its NOx conversion. In addition, uncontrolled oxidation of such carbonaceous deposits can also cause the exotherm that can irreversibly degrade V-SCR catalyst performance. Therefore carbonaceous deposit mitigation strategies, based on their characterization, are needed to minimize their impact on performance. The nature and the amount of the deposits, formed upon exposure to real-world conditions, were primarily carried out by the controlled oxidation of the deposits to classify these carbonaceous deposits into three major classes of species: i) HCs, ii) coke, and iii) soot. The reversible NOx conversion degradation can be largely correlated to coke, a major constituent of the deposit, and to soot which causes face-plugging that leads to decreased catalyst accessibility.
Video

HD OBD Challenges 2010 Experience to Help Launch 2013

2012-01-30
The development and release process for Cummins first US HD OBD certified product encountered numerous hurdles. Beyond the purely "technical" difficulties, there were also challenges related to our product development processes. This presentation provides recommendations for HD OBD product development processes & improvements. Topics will include: Training needs for program management, Performance tuning strategies vs. OBD needs, Planning for post-certification product changes, etc. Presenter Greg Moore, Cummins Inc.
Journal Article

Gear Train Mesh Efficiency Study: The Effects of an Anti-Backlash Gear

2014-04-01
2014-01-1769
In recent years, the focus on engine parasitic losses has increased as a result of the efforts to increase engine efficiency and reduce greenhouse gasses. The engine gear train, used to time the valve system and drive auxiliary loads, contributes to the overall engine parasitic losses. Anti-backlash gears are often used in engine gear trains to reduce gear rattle noise resulting from the torsional excitation of the gear train by the engine output torque. Friction between sliding surfaces at the gear tooth is a major source of power loss in gear trains. The effect of using anti-backlash gears on the gear friction power loss is not well known. As a part of the effort to reduce parasitic losses, the increase in friction power loss in the Cummins ISX 15 gear train due to the anti-backlash gear was quantitatively determined by modifying the methods given in ISO 14179-2 to fit the anti-backlash gear sub-assembly.
Technical Paper

Finite Element Method Based Fatigue Analysis of a Gray Cast Iron Component

2013-04-08
2013-01-1205
Good understanding and accurate prediction of component fatigue strength is crucial in the development of modern engine. In this paper a detail analysis was conducted on an engine component made of gray cast iron with finite element method to evaluate the fatigue strength. This component has notches that cause local stress concentration. It is well known that fatigue behavior of a notch is not uniquely defined by the local maximum stress but depends on other factors determined by notch geometry and local stress distribution. The component fatigue strength was underestimated by only considering the stresses on the notch surface for fatigue life prediction. The critical distance approach was adopted to predict the fatigue behavior of this component. Good agreements are observed between predicted life by the critical distance method and actual field data.
Technical Paper

Experimental and Modeling Study on the Thermal Aging Impact on the Performance of the Natural Gas Three-Way Catalyst

2023-04-11
2023-01-0375
The prediction accuracy of a three-way catalyst (TWC) model is highly associated with the ability of the model to incorporate the reaction kinetics of the emission process as a lambda function. In this study, we investigated the O2 and H2 concentration profiles of TWC reactions and used them as critical inputs for the development of a global TWC model. We presented the experimental data and global kinetic model showing the impact of thermal degradation on the performance of the TWC. The performance metrics investigated in this study included CH4, NOx, and CO conversions under lean, rich, and dithering light-off conditions to determine the kinetics of oxidation reactions and reduction/reforming/water-gas shift reactions as a function of thermal aging. The O2 and H2 concentrations were measured using mass spectrometry to track the change in the oxidation state of the catalyst and to determine the mechanism of the reactions under these light-off conditions.
Technical Paper

Experimental and Kinetic Modeling of Degreened and Aged Three-way Catalysts: Aging Impact on Oxygen Storage Capacity and Catalyst Performance

2018-04-03
2018-01-0950
The aging impact on oxygen storage capacity (OSC) and catalyst performance was investigated on one degreened and one aged (hydrothermally aged at 955 °C for 50 h) commercial three-way catalyst (TWC) by experiments and modeling. The difference of OSC between the degreened and aged TWCs was dependent on catalyst temperature. The largest difference was found at 600 °C, at which the amount of OSC decreased by 45.5%. Catalyst performance was evaluated through lightoff tests at two simulated engine exhaust conditions (lean and rich) on a micro-reactor. The aging impact on the catalyst performance was different under lean and rich environments and investigated separately. At the lean condition, oxidation of CO and C3H6 was significantly suppressed while oxidation of C3H8 was relatively less degraded. At the rich condition, the inhibition effect was more pronounced on the aged TWC and inhibiting hydrocarbon species from C3H6 partial oxidation can survive at temperatures up to 450 °C.
Technical Paper

Experimental Investigation of the Oil Pressure Regulator Buzz Noise on Diesel Engines

2013-05-13
2013-01-1903
Due to increasing expectations for gasoline like sound quality, today's diesel engines for light and medium duty automotive markets needs to be carefully designed from NVH perspective. Typical engine operating conditions such as low idle, light tip in, tip out demand more attention as they are more prone to generating sound quality concerns. Any abrupt change in the noise signature may be perceived as a sign of malfunction and could have a potential to generate warranty claims. In this paper, an experimental investigation was carried out to determine the root cause of the transient oil pressure regulator buzz noise which occurred during no load transients at low engine speeds. The root cause of the objectionable noise was found to be associated with the impacts of the regulator plunger on the valve seat at certain engine speeds. Noise and vibration diagnostic tests confirmed that the plunger impacts at the seat caused the objectionable buzz noise.
Technical Paper

Exhaust Sulfur Oxide Measurement Using Air Dilution

1975-02-01
750697
This paper describes a method for accurately measuring sulfur oxides in automotive exhaust. In this method, the exhaust from a car is diluted with ambient air, then introduced into a large bag filled with clean dry air. The temperature, pressure, and humidity of the diluted exhaust are measured, along with the concentrations of hydrocarbons, carbon monoxide, carbon dioxide, SO2, and sulfates. Bag concentrations are related to the exhaust by using the sulfur/carbon ratio of the fuel. Established instrumental methods are used for the carbon compounds. The sulfur dioxide in the diluted exhaust gas is measured by the West-Gaeke method, which involves collecting a gaseous sample in a scrubber containing potassium tetrachloromecurate. The sulfates are collected on a particulate filter and measured by a new colorimetric method. The techniques we have developed have been applied to both non-catalyst and catalyst-equipped cars. These studies have shown that: 1.
Technical Paper

Evaluation of On-Board Diagnostic Systems and the Impact of Gasoline Containing MMT

1997-10-01
972849
The Clean Air Act of 1990 requires on-board diagnostics (OED) capabilities on all new vehicles. These diagnostic systems monitor the performance of engine and emission system components and inform the vehicle operator when component or system degradation could significantly impact emissions. Acceptable operation of the monitor requires proper treatment of system variables. Fuel composition is one of many possible variables that must be considered for monitoring components directly in the exhaust stream. Recently, the octane enhancing, emissions reducing additive methylcyclopentadienyl manganese tricarbonyl (MMT) was reintroduced into unleaded gasoline in the U.S. Prior to reintroduction, the additive underwent extensive testing to demonstrate that use of MMT does not adversely affect vehicle emissions or the operation of emission systems such as OBD. However, questions have been raised about the influence of the additive on OBD systems.
Technical Paper

Emissions, Fuel Economy, and Durability of Lean Burn Systems

1976-02-01
760227
Several makes and models of cars were modified for lean-burn operation using the Turbulent Flow Manifold (TFM), a unique intake manifold that provides improved preparation and distribution of the fuel-air mixture. Operation of the TFM is described, and exhaust emissions and fuel economy data are presented for the various cars. Exhaust port liners and thermal reactors were shown to be effective devices for reducing emissions from the basic lean-burn system. One car equipped with the TFM, port liners, and reactors was operated for 50,000 miles on an EPA-type durability test and had emissions well below the 1975 standards for California. Emissions, fuel economy, and durability data are presented.
Technical Paper

Effects of the MMT® Fuel Additive on a Catalyzed Diesel Particulate Filter

2003-10-27
2003-01-3145
Emissions regulations for 2007 will likely require engine manufacturers to use a diesel particulate filter (DPF) to meet particulate matter (PM) emission requirements. With the lower operating temperatures of light-duty diesel engines, some form of catalyst will be required to facilitate oxidation of accumulated soot PM to regenerate the DPF. This catalyst can either be permanently applied to the filter substrate in the manufacturing process, or be continuously delivered via the diesel fuel. In this study we examined the impact of using both forms of catalyst. A recently published study of the fuel-borne catalyst additive MMT [1] (Methylcyclopentadienyl Manganese Tricarbonyl), reviewed the performance of MMT in conjunction with an uncatalyzed DPF [2].
Journal Article

Effects of Methyl Ester Biodiesel Blends on NOx Emissions

2008-04-14
2008-01-0078
Effects of methyl ester biodiesel fuel blends on NOx emissions are studied experimentally and analytically. A precisely controlled single cylinder diesel engine experiment was conducted to determine the impact of a 20% blend of soy methyl ester biodiesel (B20) on NOx emissions. The data were then used to calibrate KIVA chemical kinetics models which were used to determine how the biodiesel blend affects NOx production during the combustion process. In addition, the impact on the engine control system of the lower specific energy content of biodiesel was determined. Both factors, combustion and controls, must be taken into account when determining the net NOx effect of biodiesel compared to conventional diesel fuel. Because the magnitude and even direction of NOx effect changes with engine load, the NOx effect associated with burning biodiesel blends over a duty cycle depends on the duty cycle average power and fuel cetane number.
Journal Article

Effect of Transition Metal Ion Properties on the Catalytic Functions and Sulfation Behavior of Zeolite-Based SCR Catalysts

2017-03-28
2017-01-0939
Copper- and Iron- based metal-zeolite SCR catalysts are widely used in US and European diesel aftertreatment systems to achieve drastic reduction in NOx emission. These catalysts are highly selective to N2 under wide range of operating conditions. Nevertheless, the type of transition metal has a significant impact on the key performance and durability parameters such as NOx conversion, selectivity towards N2O, hydrothermal stability, and sensitivity to fuel sulfur content. In this study, we explained the differences in the performance characteristics of these catalysts based on their relative acidic-basic nature of transition metal present in these catalysts using practically relevant gas species present in diesel exhaust such as NO2, SOx, and NH3. These experiments show that Fe-zeolite has relatively acidic nature as compared to Cu-zeolite that causes NH3 inhibition and hence explains low NOx conversion on Fe-zeolite at low temperature under standard SCR conditions.
Technical Paper

EGR Cooler Field Return Rate Evaluation Based on Product and Application Variation

2019-04-02
2019-01-0915
The automotive industry drives some of the most stringent product requirements to ensure long product life and customer satisfaction. To demonstrate compliance with these requirements new and more accurate evaluation methods are needed. Thermal fatigue life in EGR coolers for heavy duty diesel applications have historically been a critical focus for engine OEMs. Being able to accurately evaluate product return rates due to thermal fatigue failures gives the OEM confidence that all end users will be satisfied, and allows program management to properly make fiscal decisions. Additionally, weight and cost optimization can be conducted with greater confidence. This is accomplished by accounting for product variation and application variation in thermal fatigue life evaluations. Including these variations requires a simplified numerical method to calculate product life, as tens of thousands of samples will be run through the analysis to represent real life random variation.
Technical Paper

E-diesel Effects on Engine Component Temperature and Heat Balance in a Cummins C8.3 Engine

2002-10-21
2002-01-2847
Heat rejection, liner temperature, exhaust valve seat temperature, and head gasket temperature data were recorded during a full load torque sweep of a compression ignition engine when fueled by No. 2 diesel and an ethanol/diesel fuel blend containing 10% ethanol by volume. Heat balances were calculated for engine operation at various load-speed combinations. The results of this study indicated that a greater than expected volume of E-diesel was required to operate the compression ignition engine at the same torque-speed compared to No. 2 diesel. More E-diesel fuel was required due to lower brake thermal efficiencies for E-diesel. Other than exhaust seat temperatures, there were no appreciable differences in component temperatures measured throughout the engine or the results of the heat balances calculated for the No. 2 diesel and E-diesel fuels.
Technical Paper

Durability Test Suite Optimization Based on Physics of Failure

2018-04-03
2018-01-0792
Dynamometer (dyno) durability testing plays a significant role in reliability and durability assessment of commercial engines. Frequently, durability test procedures are based on warranty history and corresponding component failure modes. Evolution of engine designs, operating conditions, electronic control features, and diagnostic limits have created challenges to historical-based testing approaches. A physics-based methodology, known as Load Matrix, is described to counteract these challenges. The technique, developed by AVL, is based on damage factor models for subsystem and component failure modes (e.g. fatigue, wear, degradation, deposits) and knowledge of customer duty cycles. By correlating dyno test to field conditions in quantifiable terms, such as customer equivalent miles, more effective and efficient durability test suites and test procedures can be utilized. To this end, application of Load Matrix to a heavy-duty diesel engine is presented.
Technical Paper

Drive by Noise System and Corresponding Facility Upgrades for Test Efficiency, Data Quality and Customer Satisfaction

2011-05-17
2011-01-1611
An existing pass by noise data acquisition system was upgraded to provide the sophisticated data analysis techniques and test site efficiency required to comply with the current and future drive by noise regulations. Use of six sigma tool such as voice of the customer helped in defining the customer requirements which were then translated into the desired engineering characteristics using QFD. Pugh concept matrix narrowed down the best option suitable for the test site modifications taking into account the critical constraints such as test complexity, system cost & transparency to the existing drive by noise setup. Features of the new system include data telemetry, frequency analysis, portability and efficient data management through the use of advanced data acquisition system. Wireless mode of the data transmission helped significantly avoid most of the test site modifications, which in turn helped to reduce the overall system implementation cost.
Technical Paper

Direct Injection Gasoline (DIG) Injector Deposit Control with Additives

2003-05-19
2003-01-2024
Additive control of DIG injector coking was investigated on two dynamometer-operated engines and validated in a vehicle. The first engine was a Nissan research “mule” engine designed to severely coke the injectors so that additive effect could be more easily discriminated. Initial additive screening and optimization was carried out in this engine and a few chosen candidates of the Mannich chemistry-type were further optimized in the second engine, and in a vehicle. The second engine, which was also dynamometer operated, was an advanced wall-guided design capable of both homogeneous and stratified operation. On this engine we were able to optimize the Mannich additive “Man C-2” separately in two different carrier systems to show a carrier effect, and by manipulating the purity of the base detergent Man C-2 to show a detergent activity modulation by trace co-products.
Technical Paper

Diesel-Spray Ignition and Premixed-Burn Behavior

2000-03-06
2000-01-0940
The temporal and spatial evolution of the ignition and premixed-burn phases of a direct-injection (DI) diesel spray were investigated under quiescent conditions. The diagnostics used included temporally resolved measurements of natural light emission and pressure, and spatially resolved images of natural light emission. Temporally resolved natural light emission measurements were made with a photo-multiplier tube and a photodiode, while the images were acquired with an intensified CCD camera. The experiments were conducted in an optically accessible, constant-volume combustion vessel over a range of ambient gas temperatures and densities: 800-1100 K and 7.3-45.0 kg/m3. The fuel used was a ternary blend of single-component fuels representative of diesel fuel with a cetane number of 45. The fuel was injected with a common-rail injector at high pressure (140 MPa). The results provide new information on the evolution of the two-stage ignition/premixed-burn phases of DI diesel sprays.
Journal Article

Diesel Particulate Filter System - Effect of Critical Variables on the Regeneration Strategy Development and Optimization

2008-04-14
2008-01-0329
Regeneration of diesel particulate filters poses major challenges in developing the particulate matter emission control technology to meet EPA 2007/2010 emissions regulations. The problem areas are multifold due to the complexity involved in designing the filter system, developing regeneration strategies and controlling the regeneration process. This paper discusses the need for active regeneration systems. It also addresses several key limitations and trade-offs between the regeneration strategy, chemical kinetics, exhaust gas temperature and the regeneration efficiency. Passive regeneration of diesel particulate filter systems is known to be highly dependent on the engine-out [NOx/PM] ratio as well as exhaust temperature over the duty cycle. Using catalytic oxidation of auxiliary fuel injected into the system, the exhaust gas temperature can be successfully enhanced for filter regeneration.
X